Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Asunto principal
Tipo del documento
Intervalo de año
1.
J Med Virol ; 95(4): e28747, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2306122

RESUMEN

Based on the patient's clinical characteristics and laboratory indicators, different machine-learning methods were used to develop models for predicting the negative conversion time of nonsevere coronavirus disease 2019 (COVID-19) patients. A retrospective analysis was performed on 376 nonsevere COVID-19 patients admitted to Wuxi Fifth People's Hospital from May 2, 2022, to May 14, 2022. The patients were divided into training set (n = 309) and test set (n = 67). The clinical features and laboratory parameters of the patients were collected. In the training set, the least absolute shrinkage and selection operator (LASSO) was used to select predictive features and train six machine learning models: multiple linear regression (MLR), K-Nearest Neighbors Regression (KNNR), random forest regression (RFR), support vector machine regression (SVR), XGBoost regression (XGBR), and multilayer perceptron regression (MLPR). Seven best predictive features selected by LASSO included: age, gender, vaccination status, IgG, lymphocyte ratio, monocyte ratio, and lymphocyte count. The predictive performance of the models in the test set was MLPR > SVR > MLR > KNNR > XGBR > RFR, and MLPR had the strongest generalization performance, which is significantly better than SVR and MLR. In the MLPR model, vaccination status, IgG, lymphocyte count, and lymphocyte ratio were protective factors for negative conversion time; male gender, age, and monocyte ratio were risk factors. The top three features with the highest weights were vaccination status, gender, and IgG. Machine learning methods (especially MLPR) can effectively predict the negative conversion time of non-severe COVID-19 patients. It can help to rationally allocate limited medical resources and prevent disease transmission, especially during the Omicron pandemic.


Asunto(s)
COVID-19 , Humanos , Masculino , COVID-19/diagnóstico , Estudios Retrospectivos , Análisis por Conglomerados , Aprendizaje Automático , Inmunoglobulina G
2.
Risk Manag Healthc Policy ; 14: 3159-3166, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1344202

RESUMEN

BACKGROUND: It is very important to determine the risk of patients developing severe or critical COVID-19, but most of the existing risk prediction models are established using conventional regression models. We aim to use machine learning algorithms to develop predictive models and compare predictive performance with logistic regression models. METHODS: The medical record of 161 COVID-19 patients who were diagnosed January-April 2020 were retrospectively analyzed. The patients were divided into two groups: asymptomatic-moderate group (132 cases) and severe or above group (29 cases). The clinical features and laboratory biomarkers of these two groups were compared. Machine learning algorithms and multivariate logistic regression analysis were used to construct two COVID-19 risk stratification prediction models, and the area under the curve (AUC) was used to compare the predictive efficacy of these two models. RESULTS: A machine learning model was constructed based on seven characteristic variables: high sensitivity C-reactive protein (hs-CRP), procalcitonin (PCT), age, neutrophil count (Neuc), hemoglobin (HGB), percentage of neutrophils (Neur), and platelet distribution width (PDW). The AUC of the model was 0.978 (95% CI: 0.960-0.996), which was significantly higher than that of the logistic regression model (0.827; 95% CI: 0.724-0.930) (P=0.002). Moreover, the machine learning model's sensitivity, specificity, and accuracy were better than those of the logistic regression model. CONCLUSION: Machine learning algorithms improve the accuracy of risk stratification in patients with COVID-19. Using detection algorithms derived from these techniques can enhance the identification of critically ill patients.

3.
Experimental & Therapeutic Medicine ; 21(3):N.PAG-N.PAG, 2021.
Artículo en Inglés | CINAHL | ID: covidwho-1107243

RESUMEN

In the present study, a prediction model with combined laboratory indexes in risk stratification of patients with COVID-19 was established and tested. The data of 170 patients with COVID-19 who were divided into an asymptomatic-moderate group (141 cases) and severe or above group (29 cases) were retrospectively analyzed. The clinical characteristics and laboratory indexes of the two groups were compared. Multivariate logistic regression analysis was performed to construct the prediction model based on laboratory indexes. A receiver operating characteristic (ROC) curve analysis was used to compare the diagnostic efficacy of different indexes. Decision curve analysis (DCA) was performed to quantify and compare the clinical validity of the prediction models. There were significant differences in blood cell count, high-sensitivity C-reactive protein (hsCRP) and procalcitonin (PCT) levels between the severe or above group and the asymptomatic-moderate group (all P<0.05). Among all individual indexes, hsCRP had the highest diagnostic efficacy (area under the curve=0.870), with a sensitivity and specificity of 0.828 and 0.802, respectively. The red blood cell count, hsCRP and PCT were used to construct the prediction model. The AUC of the prediction model was higher than that of hsCRP (0.912 vs. 0.870) but the difference was not significant (P=0.307). DCA suggested that the net benefit of the prediction model was higher than that of hsCRP in most cases and significantly higher than that of PCT, lymphocytes and monocytes. The prediction model with combined laboratory indexes was able to more effectively predict the clinical classification of patients with COVID-19 and may be used as a tool for risk stratification of patients. [ABSTRACT FROM AUTHOR] Copyright of Experimental & Therapeutic Medicine is the property of Spandidos Publications UK Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA